Tupic Z
Equivalence relations Topic Z Equivalence relations

Def: Let S be a set. A relation a subset of SXS.
Non S is a subset of SXS. $\begin{matrix} 1 & \alpha & \alpha \\ \alpha & \alpha & \alpha \end{matrix}$ $b)$ and be a set of SXS
a subset of SXS
element of ~ then We say that a is related to b Def: Let S be a set. A relative
 $\frac{1}{N}$ on S is a subset of $\frac{5 \times 5}{5 \times 5}$.
 $\pm f$ (a,b) an element of \sim then

we say that <u>a is related to b</u>

and write $a \sim b$.

Otherwise we say that a is not

related to b and

and write
$$
a^{\sim b}
$$
.
Otherwise we say that a is not
related to a and write $a \nleftrightarrow b$.

and write
$$
a \sim b
$$
.

\nOtherwise we say that a is not related to b and write $a \nleftrightarrow b$.

\nNotice that a is not required.

\nwhere a and a is not provided.

\nNotice that a is not provided.

\nTherefore, a and a is not provided.

\nThus, a is not provided.

-

 $Ex: Define a relation
on S = Z where avb$ $means$ $a \leq b$.

For example, 5 will since 5
$$
\leq 11
$$
.
\nAnd -10 - 3 since -10 ≤ 3 .
\nAnd -10 - 3 since -10 ≤ 3 .
\nByt 3 ~ -10 since 3 $\neq -10$
\nFormally you can think of
\n $\leq = \left\{ (5,11), (-10,3), (-2,20), (1,3),...\right\}$
\n $\leq = \left\{ (5,11), (-10,3), (-2,20), (1,3),...\right\}$
\nmeans means means 200
\n5 ≤ 11 -10 ≤ 3 = 2 ≤ 20 = 1 ≤ 3
\nbut we won't do this.

Ex: Define a relation ~ Means $a \sim b$ on Z where $+hat$ α $|a|=|b|$. tur example, $|S| = |-5|$ SINCe $5 \sim (-5)$ $|2| = |2|$ Since $2 \sim 2$ $| -2 | = | 2 |$ since -202 $|7| \neq |3|$ since 743 $|4|$ = $|-\rho|$ Since $44 - 10$

Def: Let S be a set and
$$
\sim
$$
 be a set and \sim be a relation on S. We say that

\n \sim is an equivalence relation on S

\nif three properties hold:

\n π (i.e., $\frac{1}{\pi}$ (ii) π (iii) π (iv) π (iv) π (iv) π (iv) π (v) π (v) π (vi) π (v

Def: Suppose that
$$
\sim
$$
 is an equivalent relation on S.

\nGiven $\times \in S$, define the equivalence class of \times to be equivalence. Thus, $\sqrt{}$ is an equivalent to the solution.

\n $\frac{equiv_{\text{e.g.}}}{\times} = \frac{5}{2} \times 1 \text{ y.e. } \text{and } \times \text{ y.}$

\n $\frac{coll_{\text{e.g.}}}{\times}$

\nwhere, since $\frac{right}{\sim}$ is symmetric.

Denote the set of all urnois is the classes by S/\sim .

EX: Consider the relation \leq on $\mathbb{Z}.$ \leq is reflexive on Z \leq on Z.
 \leq is reflexive on Z

since $\alpha \leq \alpha$ for all $\alpha \in \mathbb{Z}$. 2 \leq is not symmetric on \mathbb{Z} since for example $3 \leq 5$ but 543. since \leq is transitive on \mathbb{Z} if $a \leq b$ and $b \leq c$, then $a \leq c$. S_{0} , \leq is not an equivalence o, \leq is not an
relation on Z.

Ex: Consider ~ on Z where $a\sim b$ means $|a|=|b|$. $Ex: Consider \sim \infty$ $a=161$.
 $a=161$.

Claim: \sim is an equivalence $\frac{1}{2}$ \sim is as relation on France C Proof:
Creflexivel Let a E Z. Then $|a|=|a|.$ $\frac{50}{(symmetric)}$ Let $a,b\in\mathbb{Z}$ with anb. Then $|a|=|b|$. ζ o, $(b) = |a|.$ $Thus,$ $b-c$ (transitivel Let ab, $c \in \mathbb{Z}$ and brc. with $a \sim b$ and $b \sim c$.

Then $|a|=|b|$ and $|b|=|c|$. $Thus, |a|=|b|=|c|.$ S o, $C \sim C$. $\boxed{c|cim}$ Let's compute some equivalence CLASSES for MI $\overline{O}=\left\{ y|y\in\mathbb{Z} \text{ and } O\sim y\right\}$ $=\{y|y\in\mathbb{Z} \text{ and } 0=|y|\}$ $107 = 191$ $=\frac{5}{20}$ $|$ ~ y } $T = \{ y \mid y \in \mathbb{Z} \text{ and }$ $\vert = \vert y \vert \}$ $= \{y | y \in \mathbb{Z} \text{ and }$ $111=191$ $= 51 - 13$

 $T = \{y \mid y \in \mathbb{Z} \text{ and } -1 \sim y \}$ $=\{y|y\in\mathbb{Z} \text{ and } l=(y)\}$ $| -1| = | - 1|$ $= 51 - 13$ and $\{y\} = 2\}$ $\overline{z}=\{y|y\in\mathbb{Z}\}$ $y\sim\overline{2}$ $=\{ -2, 2 \}.$ $-2=\{y|y\in\mathbb{Z}\}$ and $(y)=2$ $y \sim 2$ $=\{-2,2\}$ $|y| = |-2|$ So we have the following: \downarrow

 $\overline{0} = \left\{ \begin{array}{c} 0 \end{array} \right\}$ $T = \{1, -1\} = -1$ $\overline{z} = \{z, -2\} = -2$ $\overline{3} = \{3, -3\} = \overline{-3}$ $T_{4} = 54, -47 = -4$ PICTURE:

 $\frac{1}{\sqrt{2}}$

The set of equivalence classes is

 $Z_{\sim} = \{5, 7, 7, 7, 3, 4, \cdots \}$

Super-duper Eqvivalence relation theorem Ex from apone Let ~ be an equivalence $02E\overline{2}$ relation on a set S. $Z = \{2, -2\}$ Let x, y ES. Then: (2) /3 OXEX $T = \{1, -1\} = -1$ (2) \overline{x} = \overline{y} iff $x \in \overline{y}$ $-16T$ $3 \overline{x} = \overline{y}$ iff $x \sim y$ $-1 \sim 1$ $\left(4\right)$ $T = \{1, -1\}$ proof: $2 = \{2, -2\}$ O We Know $\overline{x} = \{y \in S | x \sim y\}$ $\overline{1} \overline{1} \overline{2} = \phi$ $Sine$ N is reflexive, X^N . 142 $So, XE\overline{X}.$ $\overline{y} = \overline{y}$ Suppose $\overline{x} = \overline{y}$. $By 1, x \in \overline{X}.$

Thus, since
$$
x \in \overline{x}
$$
 and $\overline{x} = \overline{y}$ we get $x \in y$.
\n (\overline{x}) Now suppose $x \in \overline{y}$.
\nWhy is $\overline{x} = \overline{y} \cdot \overline{y}$
\n $\overline{x} = \overline{y} \cdot \overline{y}$
\n $\overline{x} = \overline{y} \cdot \overline{y}$
\n $\overline{y} = \{\overline{b} \in \overline{x} \land \overline{b}\}$
\nThus, $x \sim \overline{z}$.
\nAlso, since $x \in \overline{y}$ we know $y \sim x$.
\nSince $y \sim x$ and $x \sim z$, then
\nby transitivity we get $y \sim z$.
\nThus, $z \in \overline{y}$.
\n $\overline{y} = \overline{x}$
\n

we get xwy . $Since$ $x \sim y$ and $y \sim z$, by transitivity we get $x \sim z$. We get $x \sim y$.

Since $x \sim y$ and $y \sim z$, by

Since $x \sim z$ we know $z \in \overline{X}$

Since $x \sim z$ we know $z \in \overline{X}$

Claim | and claim 2

Ic get $\overline{x} = \overline{y}$, 3 Since $x \sim z$ we know $ze\overline{X}$ \langle Claim Z \langle $By claim 1 and claim 2
\nWe get $x \sim z$ we know z
\n
\n $W_{2} Q P A \times Z = V$, To$ We get $x \sim y$.

Since $x \sim y$ and $y \sim z$, by

framsitivity we get $x \sim z$.

Since $x \sim z$ we know $z \in x$

Since $x \sim z$ we know $z \in x$

(Claim 2)

We get $x = y$.

(Claim 2)

We get $x = y$.

Then by z we get $x \in y$.

Thus, $y \sim x$

we get $\overline{x} = y$. $rac{2}{\sqrt{2}}$

 $\circled{3}$ $\frac{1}{2}$
(=>) Suppose \overline{x} = \overline{y} . Then by Z we get $x \in \overline{y}$. Thus, $y \sim x$. By symmetry we get xwy.

 (ζ_{\square}) Suppose $\times\sim$ y. By det , get $y \in \overline{x}$ By 2 we get $\overline{y} = \overline{x}$. (4) Suppose $x \sim y$.

By def, get $y \in \overline{x}$

By 2 we get $y = \overline{x}$.

(4) Instead of proving

" $\overline{x} \cap \overline{y} = \phi$ iff $x \sim y''$

lef's prove the contrapositive

" $\overline{x} \cap \overline{y} \neq \phi$ iff $x \sim y''$ pitt Q $\left(3\right)$ ④ Instead of proving I \\
\\)

I

X N Y

X N Y

X N Y $=\phi$ iff $x \nsim y$ let's prove the contrapositive $U=\chi\wedge\overline{y}\neq\phi\quad\text{if}\quad\chi\sim y$ II ositive

p : If Q

is equivalent to $\neg p$ iff $\neg Q$ (4) Instead of proving
 $V = \frac{1}{2}$ iff $\times \frac{1}{2}$
 $V = \frac{1}{2}$
 $\frac{1}{x} \cdot \frac{1}{y} + \frac{1}{y}$ Then there exists $\begin{array}{lll} \mathsf{t} & \mathsf{t} & \mathsf{t} & \mathsf{t} \\ \mathsf{t} & \mathsf{t} & \mathsf{t} & \mathsf{t} & \mathsf{t} \\ \mathsf{t} & \mathsf{t} & \mathsf{t} & \mathsf{t} & \mathsf{t} \\ \mathsf{t} & \mathsf{t} & \mathsf{t} & \mathsf{t} & \mathsf{t} \\ \mathsf{t} & \mathsf{t} & \mathsf{t} & \mathsf{t} & \mathsf{t} \\ \mathsf{t} & \mathsf{t} & \mathsf{t} & \mathsf{t} & \mathsf{t} \\ \mathsf{t} & \math$ ze x n ý.

 S_{ν} , $z \in \overline{\times}$ and $z \in \overline{y}$. Then, $x\sim z$ and $y\sim z$. By symmetry we get ZwY . Thus, since $x\sim z$ and $z\sim y$, by transitivity we get \times \sim 19. (\triangle) Suppose $x \sim y$. Then by 3, we get x ⁼ 5 . $By 1, x \in X.$ - $By 1, x \in \overline{X}.$
So, since $\overline{x} = \overline{y}$ and $x \in \overline{X}$ we have $x\in\overline{X}\cap\overline{Y}.$ $\frac{1}{x} \wedge \overline{y}$. and $x < y$
 $\overline{x} \cap \overline{y}$.
 $\overline{x} \cap \overline{y}$. S_0 , $z \in \mathbb{X}$ and $z \in \overline{y}$.

Then, $x \sim z$ and $y \sim z$.

By symmetry we get $z \sim y$.

Thus, since $x \sim z$ and $z \sim y$.

by transitivity we get $x \sim y$.

(d) Suppose $x \sim y$.

Then by 3, we get $\overline{x} = \overline{y}$.

By 1, $x \in$ this is just \overline{x} S o, $\overline{x} \wedge \overline{y} \neq \varphi$. $xywege
\n\times y.
\nwege
\n $\frac{1}{-y}$ and
\n $\frac{1}{+his}$$

R: Let ^a $, b \in \mathbb{Z} \leftarrow \underbrace{\overbrace{\text{in } \text{teges}}^{s}}$ We say that a <u>divides</u> b if there exists $k\in\mathbb{Z}$ where There e x 15 $R - 2$ b
b = a k . If a divides b $b = \alpha k$. If a divid
then we write $\alpha | b$. If ^a does not divide b then we write ^a Xb. If a does not divide b

then we write a x b.
 $\frac{12}{x}$ 3 | 12 because 12 = 3. 4 \lfloor Def: Let a, b $\epsilon \mathbb{Z}$ \leftarrow (integers)
We say that a divides b if
there exists $k \in \mathbb{Z}$ where
b = a k . If a divides b
then we write a b.
Tf a does not divide b
then we write a X b.
Then we write a X b.
Then we writ k $EX: (-4) ||2 because$ $E_X: (-4) |12 \text{ because}$
 $12 = (-4) (-3)$ R

 $EX: 12X3 because$ EX the only sol to $3 = 12$ k $2w^2 + 6w = k = \frac{3}{12} = \frac{1}{4}$ Ex: 12 X 3 because
the only sol to $3 = 12 \cdot k$
would be $k = \frac{3}{12} = \frac{1}{4}$
and $\frac{1}{4} \notin \mathbb{Z}$
Oef: Let a,b, n E \mathbb{Z} with n ?2.
We say that a and b are
congruent modulo a if
 $\frac{1}{n}$ (a-b). If this is and $\frac{1}{4}$ \neq 7/ the
Would
Def:
We s $\frac{1}{\lfloor e^+ \, a \rfloor}$ a, b, n $\in \mathbb{Z}$ with n ≥ 2 . We say th at α because
 $+6$ 3 = 12

= $\frac{3}{12} = \frac{1}{4}$
 $\frac{3}{12} = \frac{1}{4}$
 $\frac{3}{12} = 12$

where
 $\frac{3}{12} = 12$

where
 $\frac{3}{12} = 12$

where
 $\frac{3}{12} = 12$ and b are Congruent module n if $\sqrt{1}$ b) . If this is the case then we write α ϵ case increased if not
= b (mod n) and if not (n) and it no!
write $a \not\equiv b \pmod{n}$. then we [So, here congruence modulo n is a relation

 $Lx: Le+ n=3.$

 \bigcirc

 -2

-2 congruent to 10 modulo 3 ? TS

We have
\n
$$
(-2)-(10) = -12 = 3 \cdot (-4)
$$

\nSo, $3)((-2)-10)$.
\nThus, $-2 = 10$ (mod 3).

distance is 12

which is divisible by 3

 10

Q: Is 3 congruent to 127 modulo 3? $4\sqrt{ }$ We have $3 - 127 = -124$ And $3X-124$. $3\neq 127 \pmod{3}$ Thus, $2 +$ distance is 124 Which is not divisible by 3

 $TS4\equiv18(mod7)7$ Łx:

Yes, because $4-18=-14=7.(-2).$ Ie, 7 (4-18).

Theorem: Let $n\in\mathbb{Z}$ with $n\geq 2$. module ⁿ is an Then, congruence modulo" equivalence relation on ZL. That is, ① (reflexive) $a\equiv a(modn)$ for all $a\in\mathbb{Z}$. ② (symmetric) $If \cap (y, b \in \mathbb{Z} \text{ and } a \equiv b \pmod{n}$ $fhen \quad b \equiv a \pmod{n}.$ $B(f(nns)two)$
If $a,b,c\in\mathbb{Z}$ und If ^a, b, ceR and $DF(a, b, c \in \mathbb{Z}$ and $b \equiv c \pmod{n}$,
 $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, H_{M} a \in C (mud n).

 $\begin{matrix} \text{post:} \\ \text{means} \end{matrix} \times \begin{matrix} \text{model:} \\ \text{means} \end{matrix}$ proof:
D Let a E Z. $x-y = nR$ for some REZ We $a - a = 0 = n.0$ have $x \equiv y \pmod{n}$

means
 $x-y=nk$

for sume kEZ . $Thus,$ $n/(a-a)$ Hence, <u>ل</u> almod proof:

We have
 $0-a = 0 = n \cdot 0$.

Thus, $n|(a-a)!$

Hence, $a \equiv a (mod n)$.

Elet $a, b \in \mathbb{Z}$.

Suppose $a \equiv b (mod n)$.

Then, $n|(a-b)!$.

Then, $n|(a-b)!$.

That is, $a-b = nk$ where n) . 2 Let a , $\overline{b} \in \mathbb{Z}$. $a, b \in \mathbb{Z}$.
 $a \equiv b(m \circ d \quad n).$ Suppose Then , n)(a-b) . That is, $a-b = nR$ where m).
Where
- Like Z re
kEZ. Multiply by -1 gives $h - a = n(-k).$ $b = 0$
 $\begin{cases} -k \\ -k \in \mathbb{Z} \end{cases}$ (- R).
- REZ since REZ

Hence
$$
n|(b-a)
$$
.
\nTherefore $b \equiv a(mod n)$.
\n3) Let $a, b, c \in \mathbb{Z}$.
\nSuppose $a \equiv b(mod n)$.
\n $an \neq b \equiv c(mod n)$.
\nThen, $n|(a-b)$ and $n|(b-c)$.
\nThus, $a-b = nk$, and $b-c=nk$.
\nThus, $a-b = nk$, $and \ b-c=nk$.
\n $1 + follows that$
\n $a-c = (b+nk_1) - (b-nk_2)$
\n $= n(k_1 + nk_2)$
\n $= n(k_1 + k_2)$
\n $= n(k_1 + k_2)$
\n $= n(k_1 + k_2)$
\n $= n(k_1 + k_2)$ since $k_1k_2 \in \mathbb{Z}$

 $Thus, n|(a-c)$ $S_{U_{J}}$ $\alpha \equiv c \pmod{n}$.

 $n\in\mathbb{Z}$ with $n\geq 2$. Def: Let We denote the set of equivalence classes modulo n as Kn.

Some people Previously, if \sim Was an equivalence write Z/nZ relation on S, then Ine set of
equivalence classer instead of Zn was denoted S/N 4550

 $Ex: Let n=2$ $\overline{O} = \{ \times EZ | \times \equiv O(m \circ d \cdot Z) \}$ $=\{1,2,3,4,5,6,7,6,7,6,7,6,7,$ $T = \left\{ x \in \mathbb{Z} \mid x \equiv 1 \pmod{3} \right\}$ $=\{..., -5, -3, -1, 1, 3, 5, 7, ...\}$ $Z=\{x\in\mathbb{Z}|\times\equiv 2(mod2)\}$ $=$ {..., - 6, -4, -2, 0, 2, 4, 6, ...} $=$ $\overline{0}$ $T = \{x \in \mathbb{Z} \mid x = -1 \pmod{2}\}$ $=$ {..., - 5, - 3, -1, 1, 3, 5, ...} $=$ \top

We will get that is two Ne will get that
 $\frac{1}{0} = \frac{1}{2} = \frac{1}{2} = \frac{1}{4} = \frac{1}{4} = \frac{1}{2} = \$ classes $\frac{1}{1} = -1 = \frac{1}{3} =$ $4 = -9 =$
 $-3 = 5 =$ $-5 = 2$ The set of equivalence classes is $Z_{2}=\left\{ \begin{array}{c} 1 \end{array} \right\}$ $0 = 2 = -2 - 1$
 $1 = -1 = 3 = -3 = 5 = -5 = ...$

The set of equivalence classer is
 $Z_{2} = \{ 5, 1 \}$

Picture:
 $Q_{-4} = \{ -3, -2, -1, 0, 1, 2, 3, 4, 5 \}$

 \overline{D} is pink T is blue

Ex: Let $n=3$. Let's compute the equivalence C lasses \overline{O} = { $X\in\mathbb{Z}$ $X\equiv O(mod3)f$ muduls $\{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\}$
 $\{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\}$
 $\{x \in \mathbb{Z} \mid x \equiv 0 \pmod{3}\}$
 $\{... \}$ $=$ $\left\{ \ldots\right\}^{-q}$, -6, -3, 0, 3, 6, 4 r
9, ... } $T = \left\{ x \in \mathbb{Z} \mid x \equiv 1 \pmod{3} \right\}$ $=$ $\{$, .., -8, -5, -2, ل ۲٫۰۰۰ ر ۲ _ر ۲ _ر ۲ $Z = \{x \in \mathbb{Z} \mid x \equiv 2 \pmod{3}\}$ $=$ $\left\{ \frac{\ }{\ } ,\ldots \right\}$ - $\left\{ 0\right\}$ -7, -4 , -1 , 2 ۲ ،،، ر8 ,5 _ا By the super-duper equivalence By the superfluit is interested that $\frac{1}{10}$ $\frac{1}{3} = 6 = \frac{1}{6} = \frac{1}{7} = \frac{1}{7} = ...$

$$
\frac{1}{2} = -4 = -1 = \frac{3}{5} = \frac{3}{8} = \frac{3}{11}
$$
\nThus, $2 = \frac{5}{3} = \frac{3}{11} = \frac{3}{2}$

\nUse parbitoned Z into 3 pieces:

\n
$$
\frac{1}{10} = \frac{3}{10} = \frac{3}{10} = \frac{3}{10} = \frac{3}{10}
$$
\n
$$
\frac{1}{10} = \frac{3}{10} = \frac{3}{10} = \frac{3}{10} = \frac{3}{10} = \frac{3}{10} = \frac{3}{10}
$$
\n
$$
\frac{1}{10} = \frac{3}{10} = \frac{3}{10} = \frac{3}{10} = \frac{3}{10}
$$
\n
$$
\frac{1}{10} = \frac{3}{10} = \frac{3}{10} = \frac{3}{10}
$$
\n
$$
\frac{1}{10} = \frac{3}{10} = \frac{3}{10} = \frac{3}{10}
$$

 $EX: a=5$
 $b=17$ $5|17$
- 15 $3⁽⁴⁾$ $17 = 5(3) + 2$ 4 Ex: $a=5$
 $b=17$
 -15 $b = 0.9$ ⁺ r $0 \le r < \alpha$ Theorem (Division Algorithm) Theorem (Division Alguiniv Then there exists unique integers q and r where $b = \alpha q + r$ and or < ^a

 $Proof:$ (existence) $S = \left\{b-a\times\middle|\begin{array}{c}x\in\mathbb{Z} \text{ and }\\b-a\times\lambda\end{array}\right\}\right\}$ Let

 $17 - 5x$ $a = 5, b = 17$ $S = \{17-5x | x \in \mathbb{Z} \}$ $=\{2,7,12,17,22,...\}$ $\overline{\mathsf{S}}$ $\overline{2}$ Smallest Clement $27.$ ofS

 $ax \begin{cases} x \in 2 \\ b - a \times 2 \end{cases}$ 0 °

 $S = \{b - ax | x \in \mathbb{Z} \}
\nS \neq \emptyset.$ Let's show $S \neq \phi$. Casel: Suppose b > 0. Setting ^x ⁼ -1 we get $1 + \frac{1}{2}$
b-ax = b-a(-1) = b+a
 0 T 630 S_0 , $b - a(-1) \in S$. 20
 670
 670 $b-a x = b-a(-1) = b+a$
 $S_0, b-a(-1) \in S.$

Case 2: Suppose $b < 0.$

Set $x = 2b$ and we get case 2: Suppose b<0. $b - a x = b - a(2b) = b(1-2a) > 0$ 0.
e get
b (1-2a
<0 -2a $\frac{2a}{a}$ $b < 0$ $\overline{a > 1}$ $\frac{2}{2}a \le -2$ $1 - 2a \le -1$ $1 - 2a < 0$

 $Thus, b-a(2b) \in$ \in S . $ax| x \in 2$ 0 °

So, by case 1 and case 2,
$$
S \neq \emptyset
$$
.
\nSince S is non-empty and if
\nconsists of non-negative integers
\nS must have a smaller length of S.
\nThus, there exists $q \in \mathbb{Z}$ with
\n $r = b - \alpha q$ and $r = b - \alpha q \ge 0$.
\n $\begin{bmatrix}\n\bot \text{ switched} \times \text{ to } q \text{ here.}\n\end{bmatrix}$
\nSo, $b = \alpha q + r$.
\nWe have $0 \le r$.
\nWe must show that $r < \alpha$.
\nSuppose instead that $\alpha \le r$.
\nThen $0 \le r - \alpha$.

Also,
$$
r-a = (b-aq)-a
$$

\n
$$
= b-a(q+1) \in S
$$
\n
$$
= b-a(q+1) \in S
$$
\nBut $r-a < r$ and $r^{-1}s$ the
\nsmalled element of S.
\nThus, it can't be that $r-a \in S$.
\nThus, it can't be that $r-a \in S$.
\nThus, it can't be that $r-a \in S$.
\nHence, $r < a$.
\n
$$
Sap = aq + r
$$
 with $0 \le r < a$, and
\n
$$
b = aq + r
$$
 with $0 \le r < a$, and
\n
$$
b = aq + r'
$$
 with $0 \le r' < a$,
\nwhere $q, q', r, r' \in \mathbb{Z}$.

We will show
$$
q=q^{\prime}
$$
 and $r=r^{\prime}$
\nLet's show that $r=r^{\prime}$;
\nWithout loss of generality)
\n $Q_{s} = r^{\prime}$
\n $Q_{s} =$

 TF So, then γ' - \cap = ak \geq a(1) = a. $\overline{|k\rangle}|$ $\left(\alpha\leq r-r\right)\leftarrow$ Then, However we also have that \overline{O} N $0\leq r'-r\,\leq\,\alpha-r\,\leq\alpha$ \bigwedge $\sqrt{r^{'2}\alpha}$ $\sqrt{0-r}$ Q $SO(2n) \subset C$ This is nonsense! $So, k\neq 0.$ We must have k=0. $Thus, O = k = 9 - 9'$.

 S_{0} , $q = q'$.
Also, $0 = a \frac{k}{a} = r' - r$ \int o, $\Gamma = \Gamma'$.

Calculating modulo n algorithm vsing the division Let n z 2. Let XEZ. to get Divide n intu x $x=nq+r$ and DEMERIA. where 4, r E Z Then, $ng = x-r$ $S_9, n \ (x-r).$ $So, x \equiv r \pmod{n}$ Hence, $\overline{x} = \overline{r}$ in \mathbb{Z}

 \subset X: \mid e \vdash n $=$ \vdash $.$ $x = 10, 562$ $\lfloor e \rfloor$ 2640 $10,562$ $10,562=4(2640)+2$ $-\delta$ $\overline{25}$ -24 16 ζ -16 $log562 \equiv 2 (mod 4)$ $0Z$ \bigcirc Z \blacklozenge

Theorem: (Equivalence classes)
\nLet n
$$
\in \mathbb{Z}
$$
 with n ≥ 2 .
\nThen
\n $Z_{n} = \{0,1,2,...,n-1\}$
\nThese elements are all distinct.
\nThat is, if $0 \le x \le y \le n-1$
\nand $x = y$, then $x = y$.

 $\frac{prox_{i}}{s}$ proof: Let $N - 1$ S ⁼ 20 , T , 2 , $\begin{pmatrix} 1 & 1 \end{pmatrix}$ $\frac{1}{2}$ 3. We want to show that $Z_{n} = 5.$ $\overline{\wedge}$ $N_{0}+h$ at $S\subseteq\mathbb{Z}$ n because it consists of equivalence classes modulo n. We just need to show just need to shi $That Z_n \subseteq D.$
Let $Z \in \mathbb{Z}$, where $z \in \mathbb{Z}$ Divide z by n to get $Z = nq + r$

 $D \le r < N$ where g,rEZ and Same as $0 \le r \le n-1$ Then, $Z-r = n9$. S o, n $(2-r)$. $Thus, Z \equiv r (mod n).$ Hence, $\overline{z} = \overline{r}$.
Thus, $\overline{z} \in S = \{ \overline{0}, \overline{1}, \ldots, \overline{n-1} \}$ because $0 \le r \le n-1$. Hence $\mathbb{Z}_n \subseteq S$. S_{0} , $Z_{n}=S$. Why are all the elements

of
$$
\overline{\{0,1,2,...,n-1\}}
$$
 distinct?

\nSuppose $\overline{0 \le x \le y \le n-1}$

\nwith $\overline{x=y}$

\nLet's show this implies $x=9$.

\nSince $x=9$ we know $\overline{x=y}$ (mod n). Using the following equation:

\nThus, $n|(y-x)$ is a function of x and x is a function of x .

\nThus, $n|(y-x)$ is a function of x and x is a function of x .

\nSince $0 \le y-x$ from above and $n \ge 2 > 0$, thus $k > 0$.

\nSince $x \le y \le n-1$ by

Subtracting
$$
x
$$
 we get

\n
$$
0 \leq y - x \leq n - 1 - x.
$$
\nSince $0 \leq x$ we know

\n
$$
n - 1 - x < n.
$$
\nThus, $0 \leq y - x < n$

\n
$$
\frac{0}{1} \leq y - x < n
$$
\nundering $0 \leq y - x < n$

\nundering $0 \leq y - x < n$

\nand $0 \leq y - x < n$

\nand $0 \leq y - x < n$

\nand $0 \leq y - x < n$

$$
Summaysofu:\\ \boxed{y-x=nk with }k\geq0\\ \boxed{y-x=nk with }k\geq0\\
$$

Let's Show k ⁼ ⁰ . Suppose instead that ^k> ^O . If so , then

 $0\leq y-x < n \leq n$ $k=y-x$ assuming ie R_7 301 then $y-x < y-x$ Which can't happen. Hence k=0. $S_0, y-x = n k = n(0) = 0$. Thu_{2} , $y = x$.

 $EX.$

 $Z_{2}=\{\overline{o},\overline{1}\}$ $Z_{3} = \{7, 7, 2\}$ $Z_{4} = \{5, 7, 7, 3\}$ $Z_{5} = \{5, 7, 7, 3, 4\}$

Def: A partition of a set S is a family of sets the where Oevery $A \in \mathcal{A}$ satisfies $A \subseteq S$, $2 \bigcup_{A \in \mathcal{A}} A = S$ (3) If A, BEA and $A+B$,
then $ANB = \varphi$. $EX: S = \{1, 2, 3, 4, 5, 6\}$ $A = \{1,3,5\}, \{2,6\}, \{4\}$ $A_1 \subseteq S$, $A_2 \subseteq S$, $A_3 \subseteq S$ A_3 \bigcirc $\bigcup_{\Delta \subset \Delta} A = A, \cup A_2 \cup A_3 = S$ AEA

 (3) A, \cap A₂ = ϕ $A_1 \wedge A_3 = \varphi$ $A_2 \wedge A_3 = \phi$ 26 $Thus, Atisa$ Partition of S $E[X;]$ $S = \mathbb{Z} = \{...,-3,-2,-1,0,1,2,3,...\}$ Consider the equivalence classes $0 = 5 - 9, -6, -3, 0, 3, 6, 9, ...$

 $T = {6,4,7,8,75,72,1,4,7,14,7}$ $\overline{z} = \{...7-4, -1, 2, 5, 8, ...\}$ The set of equivalence classes $A = 7/3 = 25, 7, 2$

Theorem Let S be a
non-empty set. Let Theorem
non-en non-empty set . equivalence relation be an the set on S . Then of equivalence classes classes S/\sim = $\{\overline{a} \mid a \in S\}$ is ^a partition of ^S . of $S/\sqrt{2} = \{ \alpha \mid \alpha \in S \}$
 $\frac{1}{15}$ α partition of 5.
 $\boxed{Ex: when \alpha is mod 3}$
 $\boxed{The \alpha is mod 3}$ then roof: $\frac{Proof:}{0. Let}$ $\overline{a} \in S/n$ where $a \in S$.

Then $\overline{a}=\left\{b|b\in S\text{ where }a\sim b\right\}\subseteq S$ 2 We have that [O ass] $S = \bigcup_{\alpha \in S} \{a\} \subseteq \bigcup_{\alpha \in \overline{\alpha}} \overline{\alpha} = \bigcup_{\alpha \in S} \overline{\alpha} \subseteq S$
aes $\left[\begin{array}{c} \frac{s}{\alpha}e^{s} \\ \frac{s}{\alpha}e^{s} \\ \frac{1}{\alpha}e^{\overline{\alpha}} \end{array}\right]$ $\left[\begin{array}{c} \frac{s}{\alpha}e^{s}/\alpha \\ \frac{s}{\alpha}e^{\overline{\alpha}} \end{array}\right]$ $\overline{a} \in S/\sim$ (3) By the super-duper equivalence $class$ theorem, if $a, b \in S$
and $\overline{a} \dagger \overline{b}$, then $\overline{a} \wedge \overline{b} = \phi$.

Theorem

Theoryem
\nLet S be a non-empty set.
\nLet A be a partition of S.
\nDefine a relation
$$
\sim
$$
 on S by

The following:
\nGiven a, b
$$
\in
$$
 S, then α b
\nif and only if there exists
\nif and only if there exists
\nA \in A and b \in A.

Then : Du is an equivalence relation $xists
od beA.
which$ $(35)/2 = A$ $D \sim i s$ an equivalence relation
 $D \sim i s$ an equivalence relation
 $D \sim i s$ an equivalence relation Proof: (don't prove in cluss, mentium = in cluss, mentium)
Proof in notes $\binom{1}{k}$ $(reflexive)$ Let XES. By the def of partition, $S = \bigcup_{n \in \Lambda} A$. $So, x \in U A.$ AEA Thus, there exists AEA with $x \in A$. $20, XNN.$ (symmetric) Let x,yES with x~y. Then there exists AE A with XEA and yEA. So, yeA and xeA. $Thus, \, \Delta N \times .$

 $(\frac{transitive}{with})$ Let x,y , $(x;+;ve)$ Let $(x,y,z \in S)$
with $x \sim y$ and $y \sim z$. With X²y and y².
Since X²y there exists AEA with XEA and yEA. $Sine y^{\sim}Z$ there exists BEA with yeB and zeB. Since ye AMB we Know $ADB \neq \emptyset$. Since A is a partition and \bigwedge , $B \in \mathcal{A}$ with A $AB \neq \emptyset$ 3 of partitions by property A with Alls:
operty 3 of parti
must have A=B. We must have A=B. $Thus_j$ $x \in A$ and $Z \in A$. So, X~Z.

 \odot We want to show that $S_{\alpha} = A$ $\left(\subseteq\right)$: Let $\overline{a}\in\frac{5}{n}$. Pick the unique AEA Where $\alpha \in A$. Then $\overline{a} = A$ by def of \sim . ζ o ζ $\overline{\alpha} \in$ $\overline{a} = A$
 $\in \mathcal{A}$ $|D|$: Let $A \in \mathcal{A}$ Let AET
Pick any a E A. Then by the def of \sim we have $\overline{\alpha} = A$. ζ هر $A = \overline{\alpha} \in S/\sim$

